首页> 外文OA文献 >Deep Learning Ensembles for Melanoma Recognition in Dermoscopy Images
【2h】

Deep Learning Ensembles for Melanoma Recognition in Dermoscopy Images

机译:皮肤镜图像中黑色素瘤识别的深度学习集合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Melanoma is the deadliest form of skin cancer. While curable with earlydetection, only highly trained specialists are capable of accuratelyrecognizing the disease. As expertise is in limited supply, automated systemscapable of identifying disease could save lives, reduce unnecessary biopsies,and reduce costs. Toward this goal, we propose a system that combines recentdevelopments in deep learning with established machine learning approaches,creating ensembles of methods that are capable of segmenting skin lesions, aswell as analyzing the detected area and surrounding tissue for melanomadetection. The system is evaluated using the largest publicly availablebenchmark dataset of dermoscopic images, containing 900 training and 379testing images. New state-of-the-art performance levels are demonstrated,leading to an improvement in the area under receiver operating characteristiccurve of 7.5% (0.843 vs. 0.783), in average precision of 4% (0.649 vs. 0.624),and in specificity measured at the clinically relevant 95% sensitivityoperating point 2.9 times higher than the previous state-of-the-art (36.8%specificity compared to 12.5%). Compared to the average of 8 expertdermatologists on a subset of 100 test images, the proposed system produces ahigher accuracy (76% vs. 70.5%), and specificity (62% vs. 59%) evaluated at anequivalent sensitivity (82%).
机译:黑色素瘤是皮肤癌最致命的形式。尽管可以通过早期发现治愈,但是只有训练有素的专家才能准确识别这种疾病。由于专业知识的供应有限,能够识别疾病的自动化系统可以挽救生命,减少不必要的活检并降低成本。为了实现这一目标,我们提出了一个系统,该系统将深度学习的最新进展与已建立的机器学习方法相结合,创建了能够分割皮肤病变,分析检测区域和周围组织以进行黑素瘤检测的方法。该系统使用最大的公开皮肤镜基准测试数据集进行评估,其中包含900个训练图像和379个测试图像。展示了新的最新性能水平,从而使接收器工作特性曲线下的面积提高了7.5%(0.843对0.783),平均精度提高了4%(0.649对0.624),并且具有特异性在临床相关的95%灵敏度操作点上进行的检测,比以前的最新技术水平高2.9倍(特异性为36.8%,而12.5%)。与在100张测试图像的子集上的8位皮肤科医生的平均水平相比,所提出的系统产生的准确性更高(76%比70.5%),并且以同等敏感性(82%)评估了特异性(62%比59%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号